Let the Message Guide the Size of Your Variable Message Sign

28 Oct.,2024

 

Let the Message Guide the Size of Your Variable Message Sign

For more information, please visit Chainzone.

 

Over the last forty years Dynamic Message Sign (DMS) or Variable Message Sign (VMS) technology for U.S. highways has evolved from mechanically operated florescent dots forming letters to present day color (Light Emitting Diodes) capable of bold, high definition images and text set on static green backgrounds and much more.  In the evolution, ITS engineers have meritoriously continued the selection process of size of the sign while abetting MUTCD mandates.  

 

Physical size used to define Variable Message Signs

can lead to defining the wrong VMS size

To satisfy the structural requirements of physical size and weight, engineers are in part,  led firstly by allowable physical limits with cost considerations.  This decision process can at times, lead to physical size dictating message content.  So with value in mind, size may lead to unnecessary messaging capacity or poor utilization of space.

Nearly all current VMS signs are of full matrix design, measured in pixel size and pixel pitch or distance, physical sizing should take a lesser priority.  Standard MUTCD character guidelines are 20 characters or less and are generally employed in nearly all specifications. It alone does not determine physical size characteristics. Essentially, it is the clarity of the messages and the display that should determine the size of the VMS.

  

Instead of size, look at the value per square foot

Think of matrix design aspect as value per square foot.  Line matrix or text only designs are not cost efficient due to under utilization of space both in area and clarity.  Full matrix designs allow efficient display capability, but only if the message and image content is practically thought out. The option to utilize more pixel pitch options allows clarity of design with a much larger part of the value statement especially with the importance of images and icons rapidly rising in application across America, particularly in color signs. 

The sole use of character size count with limiting clarity no longer predicates sign size and consequently is deeply discounted in full matrix design. 

 

Evaluate your display necessities to determine

the right variable message sign  size

 

This in mind, evaluate all the key messages and images necessary for quick or succinct user interpretation. Can a message be relayed typically in 15, eighteen-inch characters rather than twenty?  What size and shape are the key images / icons to be displayed? Interstate shields, locational images, and directional graphics are typically key-use icons.  In displaying icons along with verbiage, consider the limitation of words, and importantly, the relative size of the icon to the message.  Using multiple images?  Make sure to assess relative size and clarity to the end user.  Images often require higher definition due to greater detail than block font or simplistic lettering. Maybe, through the design process a less expensive blank out sign creates more value per square foot. Enlist a variable message sign maintenance professionals to help you navigate your options.

 

Example

How to define a full matrix to display 3 lines of 15 characters, 18" high on a 33mm full color DMS

For 33mm, the font to display an 18" character is 14 pixels high by 10 pixels width with 2 pixels between characters and 6 inter-line pixels. The matrix size of your DMS will be:

  • Height: 3 lines x 14 pixels + 2 inter-lines x 6 pixels = 54 pixels x 33mm = 1,782 mm => 5.85 feet

  • Width: 15 characters x 10 pixels + 14 inter-characters x 2 pixels = 178 pixels. Most of the vendors will propose 180 pixels. the Width will then be 180 x 33mm = 5,940 mm => 19.49 feet

  • Your DMS matrix will be 54 pixels x 180 pixels or 5.85 feet x 19.49 feet.

To know the physical size of the sign, you must take into consideration the contrast borders that surround the display area. Contrast borders vary by vendor recommendation. The physical dimension of the sign will be height = From 7' 10" to 8" - Width = From 21' to 21'6".

 

 

Conclusion

The short stroke answer: The message content, images, character/ icon definition, and user identification at prescribed distances determine the physical size necessary.  Other vitals such as weight will then come into play, as well as the type of preferred access to the sign interior is determined. Define the specification by intent of use; let the size aspect fall in place.  One may find incidentally, dynamic messaging value goes up while the physical size will shrink below expectation. 

 

 

 

 

Dynamic message sings, variable message signs NEXTGEN

Telegra Dynamic Message Signs (Variable Message Signs) technology is applicable for all ITS applications.

Telegra VMS/DMS technologies can cover complete range of ITS applications, panel sizes and functional requirements. To receive specification and drawings of particular VMS/DMS model, contact us on or .

 

VMS/DMS portfolio includes comprehensive central software for DMS maintenance. Apart from full utilization of Telegra VMS potential, the software (part of Telegra ITS platform) can be expanded to integrate all kinds of 3rd party VMS/DMS and other ITS products.

 

1. Why choose NextGen?

Our goal was never to develop ITS products just to have them in our portfolio. From our beginnings, we have been developing with passion to offer technically the best and make a breakthrough which our clients will recognize as their benefit.

The result is continuous technological advances in the development of VMS technology, all of which are consolidated in the latest generation of NextGen:

  • Energy efficient (works with < 15% of nominal LED current, does not use energy for cooling),
  • Reliable and durable (modular, hermetically sealed with no internal wiring),
  • Easy for maintenance (tool free, no periodical maintenance, no consumables),
  • Simple and intuitive to use and handle (only few robust, plug & play parts),
  • Complies to all relevant standards (NEMA TS4, EN, NTCIP, AASHTO).

All of this enables users to benefit through several aspects, among other things:

  • Lower energy costs, suitable for solar power,
  • Fewer faults, lower maintenance costs,
  • Easier and simpler manipulation, simpler user training,
  • An aesthetic breakthrough in appearance of ITS system.

NextGen technology video:

 

 

Comparison with other VMS technologies:

   

Telegra/NextGen technology

 

Estimation of industry standard technology based on available data

 

What it means to user

Low energy consumption

  <100 W/m2 of active area *
Telegra technology consumes at least 2,5 times less than most of the competition due to two main factors:
  • Telegra module design that does not require any energy for cooling (no ventilation fans),
  • Telegra optical system that delivers EN/NEMA TS4 intensity with extremely low LED currents
  85-500 W/m2 of active area *.
In average, use more LED current to achieve sufficient luminance.
It produces more heat, and requires more cooling, consuming more energy.
When ventilation fans malfunction or air filters become clogged, VMS can fail due to overheating.   Lower energy bills.
Much thinner power cables, smaller circuit breakers.
DMS/VMS technology that can operate on solar energy.
Low LED currents extend their longevity.
Less malfunctions due to fan failures.     *100% intensity, 100% pixels, white color              

Extended durability and reduced maintenance expenses

  NextGen IP67 hermetically seals all electronic circuits and LEDs &#; they are completely preserved from environmental influences. NextGen is the only VMS technology that provides IP67 through the entire operating temperature range, up to +84 degrees Celsius
NextGen does not use welding in production &#; no structural breaks or corrosion of joints can occur.
Telegra front face coating is the only in the industry that has withstand h salt spray durability test.   IP45-IP65.
Use active cooling and ventilation for outdoor VMS.
Welded housing.
h salt spray test.   VMS that serves its purpose excellently with minimized maintenance expenses during 20-year lifetime.
Lower cost of ownership.              

Simplicity of design and maintenance

  Very simple setup &#; 4 main units - LED module, power supply unit, controller, cable with robust connector.
Everything is quickly noticeable at the first glance and easily approachable.
Zero chance for wrong connections.
Servicing tasks can be performed in almost any weather condition.
No consumable parts &#; no ventilation fans, air filters.
No internal wiring, no electronic boards, no PCB connectors, no flat cables in front of servicemen.   The bundle of complex electronic modules and wiring (ribbon and power cables) prolongs the replacement process. Requires special attention because of the greater possibility of wrong replacement, wrong connection, short circuit, ...
Maintenance must be done in non humid weather conditions.   Safe and less costly maintenance.
Easy technology transfer and short learning time for maintenance personnel.
Simple and straightforward servicing with easy access to every module.              

Lightweight

  50-60 kg/m2 of active area **

NextGen modularity is a benefit for structural design. Nextgen VMS is built as a solid, simple, light lattice frame into which modules are placed - resulting in a very lightweight VMS that meets all AASHTO and EN structural standards for loads, bending and torsion.   50-120 kg/m2 of active area **   Easier to manipulate (especially for big size VMS)
Less load for a gantry.     ** Approximate weight of medium sized VMS              

Visual effect, appearance

  VMS panel thickness: 90-140 mm depending on size.
Contemporary flat panel design.   VMS panel thickness: 200-400 mm depending on size. Appears clumsier on the gantry.   State of the art technology on highway/freeway              

Comprehensive management software

  VMS management software is part of Telegra ITS Platform. Apart from regular VMS management functions, it can integrate 3rd party VMS and different ITS products through numerous VMS and industry protocols, and provides advanced functionalities like scheduling, group commands, response plans, reporting etc.
Usability and look/feel are developed based on working experience from more than 100 control rooms using Telegra software.   Basic VMS management limited to own products. Impossible or very complex integration of 3rd party products.   Full and flexible utilization of VMS.
Ability to manage different VMS technologies from one place without being dependent on suppliers.              

Client's feedback

  &#;Much easier to manipulate and install on gantry!&#;
&#;And this is it? No more internal wiring?&#;
&#;So much different to what I was used to. So simple&#;
&#;Great uniformity, great contrast, great legibility.&#;       The benefits begin to manifest from the first day of installation and keep manifesting through the entire lifetime.

 

Variable (Dynamic) Message Sign during Burn-In testing in factory

 

NextGen&#; VMS/DMS are created with waterproof modules and can be arranged together to form any size sign required. Hermetically Sealed Modules prevent penetration of particles (don&#;t accumulate dirt, dust, leaves, moisture, rust, sand, etc.), and NextGen does not require preventive maintenance - nothing to clean or replace - no air filters, no consumable parts, no ventilation fans. Operation & Maintenance (O&M) costs estimated savings with NextGen may reach up to 60%.

NextGen technology is environmentally friendly:

  • Eliminates light pollution,
  • Uses only fraction of electricity comparing to others, to run at 100% brightness,
  • Safe for users &#; runs on DC power,
  • Aesthetically superior, thin and elegant appearance provides visual comfort to travelers and owners,
  • Unlike industry average, does not require energy for ventilation or heating for widest temperature ranges -35 to +165°F,
  • Ideal sign for solar applications.

It is safe choice for contractors:

  • Accepted by most demanding authorities,
  • Fast production for large scale projects,
  • No limit in sizes - even 25m continuous viewing area for 7-lane highways available,
  • Fulfils functional requirements of all end users in the US,
  • Meets all requirements of NEMA TS-4,
  • Eliminates all major functional and mechanical problems of traditional signs,
  • Support for all industry protocols (NTCIP, XML, Modbus, etc.),
  • Built-in WEB based maintenance interface with numerous diagnostic and configuration options,
  • Certified according to toughest classes of EN - part 1,2,3,
  • 100% eliminated welding process in fabrication,
  • Complies with AASHTO requirements,
  • Front face coating durability certificates: ISO (Corrosion), ISO (accelerated weathering), guaranteed at least 10 year front face lifecycle,
  • Conforms to NTCIP , , , , , , ,
  • Meets NEC; FCC tested,
  • EMC in conformance with EN : and NEMA TS-4 environmental requirements, paragraph 2.1.4 &#; Transients,
  • Electrical Safety in conformance with EN : and HD -4-443:.

 

2. Walk-in Dynamic Message Signs

Walk-in Dynamic Message Sign for WSDOT, Washington, USA

 

Extreme endurance, highest maintenance safety and minimized cost.

Telegra&#;s walk-in Dynamic Message Signs offer prolonged longevity maintenance coupled with inherent maintenance safety:

  •  Longevity &#; Dynamic Message Signs with higher MTBF, increased longevity and reduced maintenance downtime compared to industry average,
  •  Simple servicing &#; any active component is replaceable in a few minutes,
  •  Cutting edge performance &#; Anti-Aliasing for picture smoothing, Lens Optical System, Optimized Pixel Density, True Type Fonts, Display Luminance Intensity Regulation, Current Source Monitoring Technology, Surface Mount LEDs &#; provide extraordinary advantages over standard Dynamic Message Signs in situations where motorists have only a brief period of time to absorb and react to information (especially true in reduced viability and hazardous traffic conditions not uncommon to severe environmental conditions in North America and Europe),
  •  100% customizable dimensions and pixel pitches.

 

Reliable and Flexible

Telegra walk-in is suitable even for extreme environments (temperature -40 to +164°F, humidity 0-100%, AASHTO wind extremes, vibrations, ice, snow, freezing rain, blowing sand). Advanced diagnostics of all Dynamic Message Signs functionalities includes the status of each component, cold state LED testing, and testing of fans. Optical performance exceeds the highest optical classes according to NEMA TS-4 and EN. Controller supports most widely used protocols (NTCIP, TCP/IP, PROFIBUS, MODBUS, XML-OPC, etc.)

 

3. Standard Technology Variable Message Signs (Dynamic Message Signs)

Classic Execution Variable Message Signs (Dynamic Message Signs) near Kiev, Ukraine

 

Telegra&#;s capability to customize any desired execution, dimension and matrix combination resulted so far with more than 300 different models of Dynamic Message Signs delivered to 35 countries worldwide in more than 10,000 units. (small lane use signs, speed limit or any other symbol, matrix, color, dimension or pixel pitch).

 

4. Telegra Quality Assurance and Quality Control Process

EN certification &#; initial type testing of a test-module, consisting of the same devices and properties as a real sign (a true representative of the technology). The test-module is built of the same materials, using the same coating and corrosion protection, and the same electrically and electronically devices as the real sign. The front-display shows areas equipped with light emitting elements (e.g. LEDs) of the colors, light sources, element spacing (i.e. pixel pitch) used in the real signs:

Following table gives examples of tests in initial type testing:

Durability and accelerated aging tests (simulation of 10 year aging) of all the components and fabrication procedures that are exposed to environmental influence:

Seal under the test:

Samples in weather-o-meter test:

 

Certified and annually controlled production and quality control process

  •  Annual factory production control of Notified Body according to EN &#; Part 3,
  •  Annual quality system control and recertification according to ISO : by TUV.

 

AASHTO and EN calculation and simulation of each model

Structural performance of each model of a sign is verified either through AASHTO applicable calculation and simulation or EN applicable calculation and simulation. If required, calculation results are presented to client or responsible engineer.

 

Only selected, verified, and tested components

Components used for fabrication of modules and sign frames are all carefully chosen, type tested in EN and accelerated aging tests, and long-term tested in Telegra to assure Telegra quality. The tests include:

  •  EN certification &#; initial type testing procedures,
  •  Durability and accelerated aging tests (simulation of 10 year aging) of all the components and fabrication procedures that are exposed to environmental influence,
  •  Accelerated aging tests of LED's in Telegra lab,
  •  Quality control of each purchased batch of the components &#; functional control and traceability recording.

 

Special production machines assure certified level of quality in mass production

  •  Selective coating of electronic modules &#; maximized protection and cooling performance,
  •  Custom-made production tools for each segment of the module &#; assures precision and optimum fabrication conditions for each component,
  •  Special front face coating application machine,
  •  Special sealant application machine,
  •  Special gauge for water immersion tests,
  •  High-stress temperature testing chambers,
  •  Burn-in testing polygons.

 

Environmental tests performed on each manufactured module

  •  High stress temperature changing from low to high extremes (-40 to +85 degrees),
  •  Water immersion test of each module to prove IP67 protection.

 

Optical tests of each batch

  •  One piece from each manufactured batch of each model of a sign is tested in Telegra's optical lab for full optical performance according to EN declared classification &#; luminance, beam width and reflection ratio.

 

Functional and burn-in testing

After assembly, each sign is being functionally and burn-in tested. During long-term burn-in integration testing all delivered signs are tested in minimum 168h period while status of devices is monitored 24/7. Long term testing is extremely important for devices that must operate 24/7 on distant locations, where maintenance is expensive. Long-term burn-in testing assures that more than 90% of expected faults (that usually occur in first days and weeks and operation) are solved in the factory, prior to delivery.

 

5. Dynamic Message Signs / Variable Message Signs &#; Terminology of Standards

NEMA

The National Electrical Manufacturers Association (NEMA) is the association of electrical equipment and medical imaging manufacturers. NEMA provides a forum for the development of technical standards that are in the best interests of the industry and users, advocacy of industry policies on legislative and regulatory matters, and collection, analysis, and dissemination of industry data.

 

NEMA TS-4

The NEMA Standards Publication, TS 4, &#;Hardware Standards for Dynamic Message Signs (DMS), with NTCIP Requirements&#;, was developed as a design and implementation guide for dynamic traffic messaging equipment that can be safely installed and provided to the end user with operational features based on current technology. The goal of this standard is to provide the user with safe, dependable, functional, and easily maintained DMS Equipment. The scope of the standard is to define the minimum hardware and functional characteristics of electronically controlled Dynamic Message Signs used for displaying messages to travelers.

 

The company is the world’s best walk in dynamic message signs supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

EN

EN is European standard for Dynamic Message Signs. It has been prepared by Technical Committee CEN/TC 226 &#;Road equipment&#; under a mandate given to CEN by the European Commission and the European Free Trade Association and supports essential requirements of EU Directive(s). The main properties of DMS (such as optical performance, structural performance, etc.) are divided into classes. Based on the requirements of the project, the purchaser chooses different combination of classes. The standard defines main properties of DMS, DMS testing methods, and factory production control methods. Informative annexes are provided as useful guidance on additional DMS aspects, helping those purchasing signs or signing systems.

 

NEMA TS-4 and EN Comparison

Both NEMA TS-4 and EN have the same purpose &#; they define performance parameters of LED displays (Variable Message Signs, Dynamic Message Signs) in all relevant aspects. NEMA TS-4 focuses on US client perspective, while EN focuses on European client perspective. Although they are not exactly the same in scope and content, they concur in important parameters like legibility. EN certification is mandatory in European Union - no LED displays can be installed on the road if not certified. NEMA TS-4 is not mandatory in USA.

 

CE

CE label is mandatory for Dynamic Message Signs sold and installed in the European market. The CE label can be affixed to a VMS only if the equipment has passed the rigorous EN compliance testing. CE certificate is verifying that all mandatory tests have been passed, and that specific quality classes have been approved. The tested class combinations are acknowledged in the CE certificate. EN test reports are the mandatory part of the accompanying CE-Certification documentation.

 

NTCIP

NTCIP is a group of communications standards for transmitting data and messages between microcomputer controlled devices used in Intelligent Transportation Systems (ITS). A set of NTCIP standards define all relevant aspects of Variable Message Signs (Dynamic Message Signs) communication. Including, but not limited to: NTCIP &#; Simple Transportation Management Framework:

  •  NTCIP &#; OER Base Protocol,
  •  NTCIP &#; Transportation Management Protocol,
  •  NTCIP &#; Global Object Definitions,
  •  NTCIP &#; Object Definitions for DMSs,
  •  NTCIP &#; PMPP Using RS-232 Subnetwork Profile,
  •  NTCIP &#; PMPP Using FSK Subnetwork Profile,
  •  NTCIP &#; Point-to-Point Protocol over RS-232 Sub-Network Profile,
  •  NTCIP &#; Ethernet Sub-Network Profile,
  •  NTCIP &#; Transportation Transport Profile,
  •  NTCIP &#; TCP/IP and UDP/IP Transport Profile,
  •  NTCIP &#; STMF Application Profile.

 

Dynamic Message Sign (DMS)

DMS are electronic LED sign with full matrix or line matrix of pixels, in full color (Red/Green/Blue - RGB) or monochromatic (amber or white). Matrix is a collection of equally distanced pixels arranged into a fixed number of rows and columns. Full matrix Dynamic Message Sign has the entire visible area covered with matrix of pixels. Full matrix DMS&#;s are suitable for displaying texts and images, and combination of both. Line matrix Dynamic Message Sign has multiple matrices of pixels so called &#;line matrices&#;. Each line matrix is intended to display one line of text. Line matrix Dynamic Message Signs are suitable for displaying text messages only. DMSs are used on highways, roads and in tunnels to display traffic-related messages to drivers. DMS messages contain multiple lines of text and/or images, ranging from speed limit, to advisory messages. The term Variable Message Signs is interchangeable with Dynamic Message Sign (DMS) or Changeable Message Sign (CMS). There are several different versions of DMS:

  •  Lane Control/Use Signs (LCS/LUS) - usually smaller in size, used to navigate the drivers in each lane,
  •  Side-mounted Dynamic Message Signs (SDMS) - usually bigger than LCS, used for informing drivers through text message or images,
  •   Walk-in VMS - large signs with line matrices or full matrix, amber or full color, used to transfer information through text or images.

 

Lane Control Sign (LCS) / Lane Use Sign (LUS)

LCS are usually smaller in size, mounted above each traffic lane. They usually display traffic symbols used for managing lanes such as green straight arrows for open lane, yellow rotated arrow for drivers to merge out of the lane they are in, red cross for closed lane, and speed limits. Other graphics or text is possible.

 

Side-mounted Dynamic Message Sign (SDMS)

SDMS are usually mounted on the side of the highway. They usually display text messages or graphics (i.e. speed limit).

 

Walk-in Dynamic Message Signs

Walk-in DMS is a large DMS with a large, walk-in housing. Enables maintenance personnel to enter inside the housing and perform maintenance activities in secured environment. It has the same display capabilities as regular VMS/DMS/CMS.

 

6. Dynamic Message Signs Performance Parameters

Working Environment of Dynamic Message Signs

The working environment for DMS is relatively harsh: temperature fluctuations, various types of precipitation (rain, snow, sleet, etc.), high CO2 levels, extensive heat, dust, etc. The equipment is expected to last in this exposed, corrosive environment for a minimum of 10 years. It is essential that all materials and manufacturing processes take this into account.

 

Dynamic Message Signs Performance Parameters

VMS performance parameters are defined by NEMA TS-4 and EN and are grouped in classes. The parameters are:

  •  Legibility parameters:

- Luminance,
- Luminance/Contrast ratio,
- Viewing angle / Beam width,
- Color,
- Uniformity of visual performance,
- Visible flicker.

  •  Environmental parameters:

- Resistances against corrosion,
- Temperature,
- Enclosure protection (resistance to water and dust penetration).

  •  Structural parameters:

- Resistance against impacts,
- Resistance against vibration,
- Wind loads,
- Dynamic loads,
- Temporary deflection by bending.

  •   Electrical parameters:

- Electrical performance,
- Electromagnetic compatibility.

 

7. Dynamic Message Signs Legibility Parameters

Legibility vs Visibility

According to NEMA TS-4, Legibility is the ability to discern the content of a display, while Visibility is the ability to recognize that a display exists. The elements that influence legibility of a sign are:

  • Contrast ratio of the display,
  • Luminance level of the display,
  • Viewing angle of the display,
  • Color of the display,
  • And uniformity.

Legibility distance is proportionally related to character size. As the main purpose of a Dynamic Message Signs is delivering visual message to the drivers and travelers, the major Dynamic Message Signs requirement is good legibility and visibility throughout the required viewing range. This performance is defined through the main optical parameters &#; luminance, luminance ratio (contrast ratio) and viewing angle.

 

Contrast Ratio (Luminance Ratio) R

Legibility of Dynamic Message Signs is the most critical during daytime operation. When sun glare directly strikes the sign face, it severely reduces the brightness contrast between the sign display and the sign background, resulting in inability to decipher what is displayed on the sign. The key parameter for assuring satisfying legibility in such cases is Contrast Ratio.
EXPLANATION: Contrast Ratio is the degree of pixel illumination over the degree of ambient illumination (daylight) A good Contrast Ratio is achieved by a sign front face, able to absorb ambient light, and not to reflect it. This is achieved with a proper front face paint (deep black matt paint with ultra-low reflection ratio) and special pixel design. Pixels should absorb the ambient light, not to reflect it &#; this is achieved by placing specially crafted lenses in front of LED.

Poor contrast ratio

Good contrast ratio

 

IMPORTANCE: Contrast ratio should always be considered in conjunction with Luminance. Contrast ratio assures that LED Dynamic Message Signs display with sufficient Luminance (as per EN or NEMA TS-4) features satisfactory legibility. Without proper contrast ratio, even with sufficient luminance, LED display will be poorly legible. On the other hand, Dynamic Message Signs with proper contrast ratio will be legible to the travelers.
USA-Europe COMPARISON: EN defines 3 luminance ratio classes. NEMA TS-4 defines one luminance class which is equal to R2 European class.
Conclusion: EN gives an option to require even more stringent contrast ratios than NEMA TS-4.

 

Luminance L

EXPLANATION: Luminance is the level of light that human eye perceives. Different colors require different luminance to be equally perceived by humans. Because of this, Luminance is defined for each basic color separately.
IMPORTANCE: Luminance should always be considered in conjunction with contrast ratio. Luminance assures that Dynamic Message Signs with sufficient contrast ratio (as per EN or NEMA TS-4) features satisfactory legibility.
USA-Europe COMPARISON: EN defines 3 luminance classes. NEMA TS-4 defines one luminance class which is equal to the strongest European L3 class (class for highway applications).
Conclusion: NEMA TS-4 and EN require the same luminance performance.

 

 

Relation Between Contrast Ratio, Luminance and Energy Efficiency

Contrast Ratio (R) and Luminance (L) determine legibility of Dynamic Message Signs. In order to achieve satisfactory legibility, satisfactory contrast ratio and luminance have to be achieved. If any of these parameters does not achieve required class, the DMS will not be sufficiently legible. To achieve legibility, either the sign luminance has to be increased (sending more power through the sign to light up the LEDs brighter), or the sign's front face reflection has to be decreased.

 

How to Achieve Satisfactory Contrast Ratio

As demonstrated in the previous paragraph, contrast ratio is achieved either by increasing sign&#;s luminance or decreasing front face reflection. Decreasing front face reflection is more advanced as it results in the following:

 Lower energy consumption because the sign:

  •  Uses less luminance to achieve desired legibility,
  •  Dissipates less heat due to lower LED currents (less luminance requires less current), meaning that it requires less energy for cooling.

Increased sign durability because it operates with lower LED current (less luminance requires less current), which consequently results in less LED wear and tear and prolongs LED life cycle

 

Viewing Angle (Beam Width; Cone of Vision) B

Beam Width (viewing angle, cone of vision) is the third parameter that determines legibility of the sign. Beam Width is the visual region in which Dynamic Message Sign is still legible to the driver. It is a set of three viewing angles from the center (horizontal left, horizontal right, vertical down), at which the luminance is at least 50% of the minimum required on-axis (L3, 0º horizontal, 0º vertical) luminance. No point in the viewing angle shall be less than 50% of the minimum luminance of the center point (0º horizontal, 0º vertical).

Both NEMA TS-4 and EN define the same values and conditions for viewing angles. The only exception is B5 angle which does not exist in NEMA TS-4.

 

On most of today&#;s arterial and similar multi-lane roads the satisfactory cone of vision is class B6, or NEMA class.

The following is a simulation of B6 beam width on the road:

Over specifying cone of vision (for example B7/class f instead of B6/class e) can quadruple Dynamic Message Signs energy consumption without proper need.

 

Color C

Both NEMA and EN define color coordinates of all primary colors (white, amber, red, green, blue) to make it compliant with traffic regulations. Today, most of LED manufacturers deliver LED&#;s which fulfill those requirements.

 

8. How to Choose Optimum Optical Parameters?

What is Light Pollution?

Light pollution is excessive, misdirected, or obtrusive artificial light. Over-illumination, as one form of light pollution, occurs in traffic. Over-illumination means the excessive use of light. It happens mostly due to the incorrect choice and design of LED fixtures in traffic signs. This is the result of not directing light only to the areas needed, but letting light dissipate and thus, not providing optimal light pattern. Light pollution by Dynamic Message Signs can be caused by:

  •  Too high intensity,
  •  Non-optimal light pattern,
  •  Too wide B (beam width).

Consequences of light pollution are numerous, but the most critical are waste of energy and disruption of eco-system.

Traditional Variable Message Signs waste a large portion of light projected toward the road because they have symmetrically shaped beam of light.

Well-designed optical system shapes the light in such a way that it's projected exactly to the road with no light is wasted.

 

Safe Choice of Optical Parameters

Beam width (cone of vision):
The satisfying cone of vision on most highways, arterial and similar multi-lane roads, is defined by class B6 or NEMA class e. It assures legibility of the sign mounted over the lanes and on shoulders.
Luminance and Luminance Ratio:
Taking into consideration variance in drivers' vision, and unfavorable environmental conditions, the safe choice may be to select classes L3 and R3 (see tables above). Selecting the correct parameters for a given application has a direct impact on VMS energy consumption. Insisting on cone of vision that is too wide adds to the operation costs, wastes energy and creates light pollution.

 

9. Elements of VMS (DMS) Optical System

LED

LED is abbreviation for light-emitting diode. A diode is an electrical component with two terminals which conduct the electricity only in one direction. You can imagine LED as a tiny light bulb that fit easily into an electrical circuit. They are illuminated solely by the movement of electrons in a semiconductor material. In an incandescent bulb the filament is heated to produce light. So, unlike ordinary incandescent bulb, LEDs don't have a filament that will burn out. That makes them highly efficient and durable light source. Different types of LED&#;s are used in today&#;s LED displays. One common thing for all of them is that they emit light in rounded cones. The angle of the cones is different (30 degrees, 60 degrees, 120 degrees). The most important fact that determines the level of efficiency between different displays is that emitted light is not focused to NEMA/EN bean widths (cone of vision) but to all directions.

 

Optical Lens

An optical lens is a device which transmits and refracts light, converging or diverging the beam. The purpose of the lens is to focus scattered LED light into a shape that corresponds to standard&#;s beam width. The lens increases efficiency of the LED display because it maximizes use of LED light for intended purpose. It doubles, even triples efficiency of the sign and that way reduces power consumption.

The lens creates optimal light pattern

It is obvious from the images that most of the LED light is wasted without the lens.

 

Optical System

Optical system is composition of LED, LED lens and signs front face (primarily front face paint). Those three elements determine efficiency of LED sign in terms of optical performance and energy consumption.

 

Pixel

Pixel or also known as a picture element is a physical point in a raster image, or the smallest addressable element in a display device. It is the smallest controllable element of a picture represented on the screen. By controlling the pixels various characters and pictures can be displayed on the screen. They can consist of a single LED or multiple LEDs.

 

10. DMS/VMS Environmental Parameters

The working environment for VMS is relatively harsh and equipment that is deemed "fit for purpose" is expected to last in this exposed, corrosive environment for a minimum of 10 years. A lifetime performance of LED display can be tested through ISO (Corrosion) and ISO (accelerated weathering) test procedures. A successful performance in these tests would prove that a LED display is designed for such exposed and corrosive environment for a minimum of 10 years lifetime. Resistance to environmental impacts of water and dust would be secured if the display would be hermetically sealed. It would assure stable environment for LEDs and driving electronics through entire display&#;s lifetime.

 

11. DMS/VMS Structural Parameters

Structural performance is proved through calculations based on either US (AASHTO - American Association of State Highway and Transportation Officials) or European (EN) standards. The standards take into account geographic location of the project and provide reference performance values that have to be proven with calculation. Simulations and calculations made according to AASHTO and EN are done for construction elements of a sign as well as for the entire sign. Both standards proscribe conditions under which simulations and calculations of structural elements or the whole sign will be calculated or simulated. Simulation (calculation) is done for wind gusts and static loads. Wind gusts are the critical loads for the sign because sign is a big surface exposed to wind strikes of different strength depending on geographic location. Both standards proscribe calculations that need to be done and factors that have to be considered. Static loads are other loads that signs have to withhold. Those are snow loads, sand loads, snow or sand drifts caused by road cleaning or storms, etc.

 

12. What Contributes to Increased Reliability and Durability of DMS

Reliability and durability of Dynamic Message Sign can be assured by:
a) choice of verified components from verified suppliers (LED&#;s and LED module components)
b) operating most critical components (LED, power supplies) under low stress
c) Assuring safe environmental conditions for the components of LED module and LEDs +
d) Assuring long-term durability of components exposed to environmental influences
e) Using manufacturing procedure that assures proven and certified level of quality

 

13. DMS &#; How Much Does It Really Cost?

Cost of ownership of variable message signs is made of initial cost (equipment purchase cost) and operation and maintenance cost (power consumption cost, preventive maintenance cost and repair maintenance cost) The figure graphically illustrates these costs on an example of standard amber matrix sign widely available on the markets.

USDOT ITS costs database states that operation and maintenance (O&M) cost of installed DMS annually reaches up to 5% of its capital cost (source: www.itscosts.its.dot.gov). During purchasing stage, operation and maintenance costs are often neglected even though they create significant amount of overall cost, during sign&#;s entire lifetime. On the other hand, capital cost of equipment is usually considered as the only relevant factor during choice of suppliers, although it creates only smaller part of overall cost at the end.

 

Operation and Maintenance Cost

The statistics say that operation and maintenance cost can reach initial purchase cost of LED display during its lifetime, and even surpass it. Operation cost is usually related to the cost of electrical energy used to operate displays. Maintenance cost is composed of regular (preventive) maintenance and repair maintenance costs. Optimally designed, reliable, easy to maintain, and energy efficient sign may reduce operation and maintenance costs by more than 60% compared to today&#;s standards.

14. Comparison Between NextGen and Other Technologies

The choice of right technology is determined by multiple important factors such as Standards compliance, Lifetime cost structure, Energy efficiency, Work safety, O&M complexity, Environmental performance, Structural parameters, Reliability, Weight, Aesthetics, etc. NextGen technology has been designed to accomplish and improve performance characteristics of traditional VMS and DMS technologies in terms of reliability and efficiency.

For more information, please visit passenger information sign.